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Abstract:  
This study presents the design and analysis of adaptive modulation and coding scheme intended for a codec 

used in short-range wireless communication systems; the study aims to investigate and analyze the existing 

channel prediction parameters for adapting the variation of wireless communication channels. Three 

modulation and coding schemes are used to develop the codec, namely 8QAM, 16QAM with a 1/3 BCH 
encoder, and 4QAM without error correction. MIMO antenna is used to increase the spectral efficiency of the 

codec within the fading channel.  

The presented scheme operates at a BER threshold of 10-3, with a channel correlation of 0.96 and a noise 

variance of 3 dB. The adaption parameter and the channel model provide the basis of the machine learning 

model. A perfect predictor with zero root means square error (RMSE) is used as a standard predictor. Long-

short Terme memory Neural Network (LSTM-NN) and conventional Neural network (NN) predictors are used as 

prediction models for the adapter with RMSE of 3.9157 and 5.6121, respectively.  

The result found that the adaptive modulation and codec parameters chosen under the LSTM-NN have a data 

rate of 15 Mbits/s and 10 Mbits/s for conventional NN predictor. The codec achieved the design requirements, 

and it can serve users operating within 2.4GHz. However, the AMC design can be improved by using more 

robust encoding and modulation techniques such as 64QAM and transmitting using more antennas.  
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I. Introduction 
 Adaptive modulation and coding (AMC) technologies have been broadly used in wired and wireless 

communication systems to adjust the variations of the communication channel environments. Generally, in 

communication systems, wireless channels are more intensely time-variant than wired communication channels. 

The standards for wireless communications are recommended to apply AMC to enhance spectrum efficiency 

(SE) and consistency to achieve user demands. Recently, AMC combined some technologies such as orthogonal 

frequency division multiplexing (OFDM) and multiple-input multiple-output systems (MIMO) owing to 

improve consistency of wireless systems such as Wireless Fidelity (Wi-Fi) standards.  

However, in the practical wireless systems, once AMC structures are combined with OFDM and MIMO, 

modulation and the convolutional coding process are highly challenging, and the design of the communication 

system divides the signal processing into many independent blocks. Consequently, optimizing these 
combinational systems leads to computationally complex systems [1]. In contrast, machine learning (ML) has 

the potential to enhance those independent blokes and make the computation for such complex systems possible. 

Hence, ML assists as a batter contender for optimizing AMC aided wireless systems with explicit hardware 

configurations when communicating over wireless channels.  

              Researchers have focused on developing approaches to switch between different modulation schemes 

to address the performance and adapt the variations of wireless channels. In [2], they use a signal to noise ratio 

(SNR) based adaption using M-array phase shift key (MPSK) and Reed Solomon (RS) code to make switching 

between schemes using a channel predictor given by              where     is the     value 

determined by the transmitter with the exists of the fading amplitude  . In [3], they present a design that 

considers the medium access control performance requested by an application. They used M-array quadrature 

amplitude modulation (M-QAM) with convolutional code bounds described in [10], and they defined the 

prediction model under the use of minimum mean square error (MMSE) as             
        

     
  , where 
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Lcurrent and Lprev are the length of current and previous packet length and    is the difference between the 

current and previous channel matrices. [4] proposed a model based on power and BER constraints using trellis 
codes. A more robust algorithm is presented in [5], which considers IEEE 802.11n guard interval sizes; they 

derived the optimal BER value for switching between the MSCs and concluded that their algorithm provides 

high throughput while reliable. Later, the authors of [6] used a fully connected neural network (NN) and 

convolutional neural network. They achieved a better result than traditional AMC designs for 64QAM using 

MMSE. The AMC model in [7] uses supervised learning to reduce complexities and a deep neural network for 

channel estimation using channel matrices as training data. Each channel matrix is mapped to its respective 

transmitter antenna; their results show that such a design outperforms conventional designs while being less 

complex. In [8], the authors used reinforcement learning-based AMC for underwater communication; their 

design reduces BER with less energy consumption. [9] explores a NN channel prediction model under different 

channel models, namely Jakes, Clarke/Gan’s, and 3rd generation partnership project (3GPP) spatial channel 

model. Their model performs better when using the jakes model because of Jakes's substantial time domain 

correlation over different SNR values. In order to improve performance and system reliability, [10] suggests an 
online learning algorithm for AMC that keeps a database of post performances. This approach allows the 

training data to be generated while the system is in use. 

            In this work, adaptive modulation and coding scheme is the primary technique used to adapt the varying 

signal strengths. For the system to meet requirements and achieve a high data rate, the assumptions made are the 

linearity of the system channel and fading coefficients to be constant for the entire codeword. For designing a 

machine learning prediction model, the Long-Short term memory neural network (LSTM-NN) which is a 

variant of recurrent neural networks (RNN) used to model the time varied data for the reason that it allows the 

information data to persist in the neurons. In contrast to the simple neural networks (NN), which only depend on 

the current input. LSTM contain structures called memory cell, which modify the information in the network. 

The information in a memory cell is controlled by gates, namely the input gate, forget gate, and output gate. The 

forget gate is used to discard information no longer needed by the memory cell. The input gate dictates when 
new information is added to the memory cell. The output gate is responsible for determining the output based on 

input data. The operation used in an LSTM-NN is similar to a traditional NN with slight variations to 

accommodate additional computational units [11]. Detailed LSTM-NN processes are described in the coming 

section III, part A.  

 

II. Technical Background  
            Wireless networks take advantage of a digital communication model, and this work tries to adapt the 

variation of the short-range wireless communication channel. This section introduced the fundamentals of 

wireless communication systems.  
 

A. Digital Communication Model  
              Wireless networks take advantage of a digital communication model consisting of the main parts of 

digital communication to exchange information from the data source to the data sink. Nowadays, most digital 

systems use progressive encryption standards to present confusion and dispersion of information messages. 

Forward Error Correction (FEC) encoder is responsible for controlling error introduced in an encryption process 

in communication systems and intending k bits to encoder appends r to add redundancy. Then the encoder 

transforms the information into a unique n bitstream; FEC has a k/n code rate. Commonly used FEC codes 

include convolutions codes, LDPC, Turbo codes, RS, and BCH codes. The modulation performs bitstream maps 

to signal waveform; this process is completed by using a single or combination of parameters of the carrier 

signal. 
 

B. Receiver Equalization  
               Receiver equalization is a method of restoring high-frequency signals components usually attenuated 

by channels. One of the most used Equalizers is a zero-forcing equalizer (ZF). This equalizer W is given by the 

equation below to reject inter-carrier and inter-symbol interference.    

                                                                   
Where the equalizer W is a complex matrix in the exact dimensions as H. the drawback of the equalizer is that it 

amplifies noise caused by linearly dependent columns[13]. ZF is also unfunctional if     is singular. The 
enhancement to equalization (ZF) detector is come inform of minimum mean square error (MMSE) detector, 

which introduces a regularization term      to the central equalizer equation given above in (1), which 
enhanced the system to be less sensitive to the channel conditions [13].  

                                                                  
MMSE is applicable to work in both cases where Tx > Rx or Tx < Rx [13]. And the remaining part of the 

receiver operates in the inverse operation of their respective transmitter parts. 
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III. Procedures and considerations 
The success of this work is mainly dependent on designing a simulation model that meets the flowing 

requirements. 

1. The codec must achieve a rate of at least 2 bits/Hz. 

2. The Rayleigh fading channel with a bandwidth of 4MHz. 

3. The data rate must be at least 10Mbits/s.  

We consider the channel to be quasistatic, and the fading coefficients stay constant for the entire codeword; in 

addition, the antennas are independent of each other, which makes the channel have a unique coefficient for 

each antenna. The generated data to be transmitted has been compressed and encrypted under the existence of 

hardware components to support the proposed codec. So, the success of this work mainly stands on designing a 

simulation model that meets the requirements mentioned above. And MCS, LSTM-NN architecture as a 

machine learning model should be justified the design process and parameter choices.  
 

A. Structure of LSTM-NN 

               Since the conventional neural network is feed-forward (FNN), it does not have sequences or loops 

slightly, and its ability for sequential modeling is relatively poor. In contrast, RNN is a type of neural network 

capable of dealing with time-varied data because of its internal memory and the feedback chain structure that 

makes prediction output can be specified through the previous input sequences. For channel prediction purposes, 

RNN is enforceable to accomplish better performance compared with FNN. Nevertheless, in RNN, the back-

propagated error speedily vanishes [14]. Therefore, RNN is not suitable to solve problems that require 

dependencies for long-term temporal learning. To overcome such an issue, the LSTM-NN is proposed [15]. 

Contrasted with RNN, LSTM-NN controls the passing data through three gates over the sequence, and its 

internal loops can store the long-term dependencies previously learned from input data. LSTM-NN basic 
architecture is shown in figure 1(a). during each time, the state of hidden layer hL updates with input data xi at 

present and the hidden state hL of the last moment: 

                                                                

Where    is the activation function,     weight matrixes between the input to the hidden layer  and     are 

between two consecutive hidden states, and    representing the bias function.  

 

 
(a) 

 

(b) 

Figure. 1. (a) Basic LSTM-NN architecture. (b) LSTM cell architecture [16]. 
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Figure. 1. (a) shows the unfolded structure of LSTM-NN with Xi and Yo the input and output vector, 

respectively; where hL represents the hidden state; Wih and Woh are the weight matrix between the input-to-

hidden layer hidden-to-output layer, respectively. LSTM cell structure is shown in the figure. 1. (b), LSTM has 
three gates: forget, input, and output gates. The forget gate fL determines what state information at time L-1 (CL-

1) is to be forgotten. Then the input gate iL adopts which information is updated, and the cell input state     It will 

be produced by a tanh neural network layer. After that, the cell state at this time    It can be calculated. Lastly, 

the output gate   will filter the output    to determine the cell state   . During the reiteration of the all-time 

steps from 1 to L, the output sequence                  Is computed. 

                                                      

                                                        

                                                    

                                                   

                                                        

                                                            

Where   is the activation function of the gates,    ,   ,   , and    Represent the weights matrices between 

the hidden layer to these three gates. While   ,   ,   , and    are representing bias functions. LSTM-NN can 

learn from the previous input data because its cell structure can keep data for long-term dependencies. 

Therefore, it is suitable for the time-varied sequence prediction [16]. Because LSTM-NN cell structure has the 

ability to store the input information for log-term sequential dependencies learned from prior input data. In this 

work, the designed AMC predictor is adapted to flow the supervised machine at a specific time and can be 
precisely predicted from the signal randomly generated from the bits sequence at this moment and previous 

signal sequences using the LSTM-NN cell.  

 

B. Codec Adaptive Modulation and Coding Model Design 

               The design runs at a frame level, with each frame consisting of a sequence of randomly generated bits. 

This work uses BCH codes with symbols from binary filed        Where m = 4. The encoder used is a BCH 

with message length k = 5 and codeword length that is n = 2m – 1, which is capable of correcting up to 3 errors, 

given by RS codes because of better performance over fading channels. The modulation scheme used is QAM; 

it utilizes both ASK and PSK to provide better spectrum efficiency than any of them separately. To increase 

channel capacity and spectral efficiency, the proposed AMC uses MIMO multiplexing. The AMC makes use of 

a     MIMO antenna. For the simulation purpose, two transmit antenna (Tx) and two receive antenna (Rx) 
were used in order to model a narrowband channel in the form of matrix H. these matrix elements represent 

amplitude and phase shift introduced by the channel and denoted by hij which represent MIMO channel 

connection between    receiver and     transmitter antennas. The antenna output signal (y) comes from groups 

of an input signal (x) via input antennas, where              comes from the assumption that       .  

                                                                                    

For simulation purposes, equation (10) is rewritten in (11) as the exact structure adopted in the code.  

 
  

  
   

      

      
  

  

  
   

  
  

                                            

Three different modulations and coding schemes (MCS) are combined to make up the AMC, and table 1 shows 

the structure for each MCS. MCS1 is the only one that does not make use of forwarding error correction (FEC). 

The MCS parameters are chosen for the codec to achieve a high data rate; equation (12) shows that the selected 

MCS meets the 2 bits/Hz rate. Using a pulse shaping coefficient of   =1, MIMO coefficient     , M is the 

modulation order, and R represents the FEC code rate. The spectral efficiencies for MCS1, MCS2, and MCS3 

are shown in table no 1.  

 

Table no 1. Modulation and coding schemes for AMC 

MCS Code rate QAM order MIMO SE Es 

MCS1 1 4 2x2 4 2 

MCS2 1/3 8 2x2 2 6 

MCS3 1/3 16 2x2 2.67 10 

 

   
          

  

                                                                      

In the simulation, the additive white gaussian noise (AWGN) is generated at the beginning of each frame, the 

noise variance   
  dependent on SNR     and the MCS used. The noise variance for each MCS is determined 

using equation (13).  
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Where Es is the average energy of the symbols after modulation. The energy is computed by taking the mean of 

the distances squared of the QAM constellations. The average energies for 4QAM, 8QAM, and 16QAM are 2,6 

and 10 respectively.  

     
 

 
                                                                                    

   
     

       
                                                                           

      
  

  
                                                                               

The frame structure of the simulated packets is described using equation (12 – 14). Where F is the frame size, 

     is the number of coded by bits from an (n, k) encoder, SM are the symbols from a M-array modulator and 

SMIMO are symbols from each antenna. The simulation uses a frame size of 2000 bits for each MCS. Table no 2 

shows the frame structure for each of the MCS.  

 

Table no 2. Modulation and coding schemes frame structure 

MCS Coded bits QAM symbols Antenna symbols 

MCS1 2000 1000 500 

MCS2 6000 2000 1000 

MCS3 6000 1500 750 

 

We used an MMSE equalizer based on the reason discussed in section (II-part B) to remove errors introduced by 

the channel. The output signal    from the MMSE equalizer is defined using equation (17). In order to recover 

the transmitted signal X, the respective inverse operations are performed on   .  

                                                                                 (17) 

For the prosed model to be adaptive to channel conditions, a recursive model is provided in equation (18) that 

relates the current channel Hf to the previous frame channel Hf-1. Equation (18) models a discrete channel update; 

it follows that the channel update can be written as an ARMA process which can be used to model the 

correlation in a discrete linear process. This channel update is deepened on the LSTM-NN gates discussed in 

section (III).  

                                                             (18) 

 The extent to which the channel is correlated is controlled by         which is the fading steady-state 

coefficient. A large   means a high channel correlation, and a lower one means a low channel correlation. The 

parameter Gf is used to introduce random channel errors using conditions states in LSTM-NN gets. The channel 

starts to fade from the second frame as such Hf is initialized to an identity matrix for the first frame. Hf and Gf 

are determined at the end of the frame. 

We define the adaption parameter ξ, which is a measure of the effect of the channel and equalizer to the SNR. 

The adaption parameter is used to specify the range at which a given MCS is active. The adaption parameter is 

given a measure of the effect of the channel and equalizer Z = HW to SNR.  

   
         

  
   

 
   

         
  

   
 
   

                                                         

A translation is done from the SNR vs BER curves to a set of ranges in ξ. The translation rule is the most 

spectral effective MCS should be active for the majority of the frames. Using the model in equation (19) shows 

that ξ has a variation centered at the initial value of          
  

   
 
   .  

 

C. Predictors Design 

In this work, two predictors have been introduced; one is based on the conventional NN, and the 

second is based on LSTM-NN. The NN has trained a window size of 4, which means each 4 ξ points are needed 

to predict the next value of ξ. The value of the predicted ξ will be used to select a specific MCS used in the next 

frame. The rest of the structure, such as the number of hidden layers, learning rate, and others are determined 

through experimentation. A similar approach was used for LSTM-NN. The final parameters are chosen for the 

output to form the loss function in minimum. Both predictors use root mean square error (RMSE) as a loss 

function given in equation (20) over n data points. MCS classification is done using ξ values determined by the 
predictor from the range of ξ values.  
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The accuracy of the predictors is determined at the end of each forward propagation epoch. The cost or loss 

function is used to determine the difference between the predicted value and the expected value. 

 

IV. Simulation Results and Analysis 
In this work, the first task carried out is to determine the modulation orders for the different MCSs. 

Initially, the simulation is run to determine the effective ξ and SNR regions for each MCS. Using equation (18), 

we observed that if   is closed to a value of 1, then the channel is almost perfectly correlated since the noise 

term    will have a negligible effect on the channel conditions in the current frame. The   value is chosen such 

that it strikes a balance between the two extremes. Ultimately, we set on        and   
     The channel 

variance   
  is kept constant, making comparison simpler. The specific value of   

  was experimentally 

determined through an iteration process. Figure. 2. shows ξ with the chosen channel model parameters settled 

on. 

 

Figure. 2. Low correlation at        and   
     

 

In figure 2. the MCS regions are defined to be MCS1 for ξ ϵ [0, ∞), MCS2 for ξ ϵ (0, -15) and MCS3 for ξ ϵ (-

     ]. Furthermore, we observe that the value of 10log (ξ) is centered around                   
 
   

   
 
    

 . Table 3 shows the operating ranges for each MCS subsystem. These ranges are used for the predictor to 

decide on which MCS to employ at a given frame. 

 

Table no 3. MCS operational range 

 
 

 
 

 

 

The SNR at which the received signal experiences significant BER curves are shifted to the right by a 

factor of 10log      
   

 

   
|Wij|)

2) due to the fact that steady-state coefficient fading is less than 1. Therefore, 

the curves generated in this figure are used to determine the BER threshold for the AMC. We select a BER 

threshold of 10-3 which means 100 error bits for every 100,000 transmitted bits. The effective AMC SNR ranges 

can then determine using the BER threshold and MCS ξ regions as scaling conditions. The ξ = -11, which is 

determined through the simulation, corresponds translated to an SNR value of 30 dB, which is the point at 

which the leftmost curve meets the BER threshold. The SNR regions are then defined to span a proportional 

region to ξ. The regions are defined to be MCS1 for SNR ϵ (-∞, 32], MCS2 for SNR ϵ (32,37) and MCS3 for 

SNR ϵ [37, ∞). 

MCS ξ range SNR range 

MCS1 [0, ∞) (-∞, 32] 

MCS2 (0, -15) (32,37) 

MCS3 (- ∞, -15,] [37, ∞) 
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 The perfect predictor is developed to be the most optimal AMC. It predicts the channel conditions by 

calculating the ξ for the next frame and then selecting the appropriate MCS based on that value. As such, the 

perfect predictions can optimal MCS for a given frame. The perfect predictor is bounded by the 4QAM and 
16QAM as expected with a shape that maximizes the effective data rate.  

 

Figure. 3. SNR vs BER curves for the selected MCS at        and   
   . 

 

 

Figure. 4. Perfect AMC predictor. 

 

The machine learning data set is generated by obtaining Figure 4.1. and Figure 4.2. the data set is slit 

such that 90% is used for training and the rest as testing data. Each of the predictors also gives the MCS 

classifications for each ξ.  The specify parameters used for the conventional neural network and LSTM-NN 

were empirically determined. The predictor's performance is determined by computing the effective data rate of 

each system. The data rate is calculated as                         . 
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Figure. 5. conventional Neural network predictor.  
 

 

Figure. 6. Long-Term Memory predictor. 

 

Where M is the modulation order of the MCS, R is the code rate, FM is the number of frames that 

activate MCS, and (BERt) is the BER threshold for AMC. We concluded by considering the RMSE for each 

predictor since both predictors were trained using the same generated data. The RMSE for the perfect predictor 
is 0, whereas the LSTM-NN and NN predictors have an RMSE value of 3.9157 and 5.6121, respectively. We 

can conclude that the perfect predictor is more accurate, followed by the LSTM-NN predictor and, lastly, the 

conventional NN predictor.  

 

V. Conclusion 

              This paper introduced the implementation of a machine learning-based adaptive codec using LSTM-

NN and conventional NN predictors under the AMC technique to improve the channel prediction for the short-

range wireless communication channel such as Wi-Fi. The system is simulated under a Rayleigh fading channel, 

and the simulation tool used is MATLAB.  The designed codec used 8QAM and 16QAM with a 1/3 BCH 
encoder and 4QAM without FEC. Three different AMCs are implemented: a perfect predictor, LSTM-NN 

predictor, and NN predictor; these predictors have RMSE of 0, 3.9157, and 5.6121, and the data rate of 15 

Mbits/s and 10 Mbits/s, respectively. The RMSE values the codec can serve users operating in 2.4GHz. 

Furthermore, it improves data rate and reduces computation complexity. The AMC codec can improve by using 

more robust codecs such as turbo and LDPC codes. 
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